Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Front Pharmacol ; 15: 1270612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655179

RESUMO

Aims: Vincristine (VCR), an antineoplastic drug, induces peripheral neuropathy characterized by nerve damage, limiting its use and reducing the quality of life of patients. VCR causes myenteric neuron damage, inhibits gastrointestinal motility, and results in constipation or paralytic ileus in patients. Oxytocin (OT) is an endogenous neuropeptide produced by the enteric nerve system, which regulates gastrointestinal motility and exerts neuroprotective effects. This study aimed to investigate whether OT can improve VCR-induced gastrointestinal dysmotility and evaluate the underlying mechanism. Methods: Mice were injected either with saline or VCR (0.1 mg/kg/d, i. p.) for 14 days, and OT (0.1 mg/kg/d, i.p.) was applied 1 h before each VCR injection. Gastrointestinal transit and the contractile activity of the isolated colonic segments were assessed. The concentration of OT in plasma was measured using ELISA. Immunofluorescence staining was performed to analyze myenteric neurons and reactive oxygen species (ROS) levels. Furthermore, the indicators of oxidative stress were detected. The protein expressions of Nrf2, ERK1/2, P-ERK1/2, p38, and P-p38 in the colon were tested using Western blot. Results: VCR reduced gastrointestinal transit and the responses of isolated colonic segments to electrical field stimulation and decreased the amount of neurons. Furthermore, VCR reduced neuronal nitric oxide synthase and choline acetyltransferase immunopositive neurons in the colonic myenteric nerve plexus. VCR increased the concentration of OT in plasma. Exogenous OT pretreatment ameliorated the inhibition of gastrointestinal motility and the injury of myenteric neurons caused by VCR. OT pretreatment also prevented the decrease of superoxide dismutase activity, glutathione content, total antioxidative capacity, and Nrf2 expression, the increase of ROS levels, and the phosphorylation of ERK1/2 and p38 MAPK following VCR treatment. Conclusion: Our results suggest that OT pretreatment can protect enteric neurons from VCR-induced injury by inhibiting oxidative stress and MAPK pathways (ERK1/2, p38). This may be the underlying mechanism by which it alleviates gastrointestinal dysmotility.

2.
Cell Rep ; 43(5): 114135, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38652662

RESUMO

Optimal activation of stimulator of interferon genes (STING) protein is crucial for host defenses against pathogens and avoiding detrimental effects. Various post-translational modifications control STING activity. However, the function of interferon (IFN)-stimulated gene (ISG) 15 modification (ISGylation) in controlling STING stability and activation is unclear. Here, we show that the E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice) facilitate STING activation by mediating ISGylation of STING at K150, preventing its K48-linked ubiquitination and degradation. Concordantly, Herc6 deficiency suppresses herpes simplex virus 1 infection-induced type I IFN responses and facilitates viral replication both in vitro and in vivo. Notably, severe acute respiratory syndrome coronavirus 2 protein papain-like protease cleaves HERC5-mediated ISGylation of STING, suppressing host antiviral responses. These data identify a mechanism by which HERCs-mediated ISGylation controls STING stability and activation and uncover the correlations and interactions of ISGylation and ubiquitination during STING activation.

3.
Bioresour Technol ; 401: 130711, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641302

RESUMO

Lithium carboxymethyl cellulose (CMC-Li) is a promising novel water-based binder for lithium-ion batteries. The direct synthesis of CMC-Li was innovatively developed using abundant wood dissolving pulp materials from hardwood (HW) and softwood (SW). The resulting CMC-Li-HW and CMC-Li-SW binders possessed a suitable degree of substitutions and excellent molecular weight distributions with an appropriate quantity of long- and short-chain celluloses, which facilitated the construction of a reinforced concrete-like bonding system. When used as cathode binders in LiFePO4 batteries, they uniformly coated and dispersed the electrode materials, formed a compact and stable conductive network with high mechanical strength and showed sufficient lithium replenishment. The prepared LiFePO4 batteries exhibited good mechanical stability, low charge transfer impedance, high initial discharge capacity (∼180 mAh/g), high initial Coulombic efficiency (99 %), excellent cycling performance (<3% loss over 200 cycles) and good rate capability, thereby outperforming CMC-Na and the widely used cathode binder polyvinylidene fluoride.

4.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543926

RESUMO

This randomized, double-blind, placebo-controlled phase 1/2 trial aimed at evaluating the safety and immunogenicity of Ad5-nCoV via aerosolized or intramuscular or intramuscular-aerosolized routes in SARS-CoV-2-negative adults aged over 18 years. In the phase 1 trial, participants were sequentially enrolled into one of five regimen cohorts: Low-Dose (two doses of aerosolized Ad5-nCoV with 0.5 × 1010 viral particles [vps] per dose), Middle-Dose (two doses of aerosolized Ad5-nCoV with 1.0 × 1010 vps per dose), High-Dose (two doses of aerosolized Ad5-nCoV with 2.0 × 1010 vps per dose), Mixed (intramuscular Ad5-nCoV with 5.0 × 1010 vps [first dose] and aerosolized Ad5-nCoV with 2.0 × 1010 vps [second dose]), and Single-Dose (one dose of aerosolized Ad5-nCoV with 1.0 × 1010 vps). Eligible participants in the phase 2 trial were stratified by 18-59 years old or ≥60 years old and then were sequentially enrolled into one of six regimen cohorts: Low-Dose, Middle-Dose, High-Dose, Mixed, Single-Dose, and Intramuscular (one dose of intramuscular Ad5-nCoV with 1.0 × 1010 vps). The intervals between the two doses were 56 days. Participants were randomly allocated in 3:1 (phase 1) and 5:1 (phase 2) ratios to receive either Ad5-nCoV or the placebo in each cohort. This study is registered on ClinicalTrials.gov, NCT04840992. Most adverse reactions that occurred during the solicited period were mild and moderate. One serious adverse event (myelodysplastic syndrome) was considered potentially related to the aerosolized Ad5-nCoV. The GMTs of neutralizing antibodies in the Mixed group were the highest with 57.03 (95% CI: 23.95, 135.80) and 97.37 (95% CI: 74.30, 127.59) in phase 1 and 2 trials, respectively, 28 days after the second dose (p < 0.0001), which showed significantly higher immune responses compared to other regimens with aerosolized or intramuscular Ad5-nCoV alone.

6.
Toxicol Appl Pharmacol ; 484: 116887, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38458354

RESUMO

AIMS: Gastrointestinal paresthesia and dysmotility are common side effects of vincristine (VCR) chemotherapy, which have become one of the factors for dose reduction, therapy delay or discontinuation. However, the mechanism is not entirely clear, whether it is related to autonomic nerves injury remains unknown. Therefore, we aimed to study whether VCR-induced gastrointestinal toxicity is related to changes in mesenteric afferent activity. METHODS: The effects of a single VCR stimulation and long-term systemic VCR treatment on mesenteric afferent activity were investigated by directly recording mesenteric afferent discharge in vitro. RESULTS: Our results showed that a single VCR (0.001-1 µmol/L) stimulation obviously increased the spontaneous, chemically evoked and mechanically evoked discharge of jejunal and colonic mesenteric afferents. This kind of hypersensitivity of VCR could be blocked by capsazepine, a transient receptor potential vanilloid 1 (TRPV1) antagonist. For the mice treated with VCR (0.1 mg/kg/d, i.p.) for 14 days, the abdominal withdrawal reflex and writhing response scores were reduced. Meanwhile, the spontaneous discharge of colonic mesenteric afferents and the afferent response to VCR was downregulated, and the afferent sensitivity to chemical and mechanical stimulation was reduced. Moreover, the expression of TRPV1 in colon was decreased. CONCLUSIONS: These results suggest that the direct stimulation by VCR increases the mesenteric afferent sensitivity by activating TRPV1, which may be the reason of VCR-induced abdominal pain; the long-term systemic treatment of VCR decreases mesenteric afferent sensitivity by reducing TRPV1, which may be the reason of VCR-induced constipation.


Assuntos
Canais de Cátion TRPV , Camundongos , Animais , Vincristina/toxicidade , Regulação para Baixo , Canais de Cátion TRPV/metabolismo
7.
Inorg Chem ; 63(13): 5831-5841, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506755

RESUMO

The exploration of new rare-earth (RE)-based triangular-lattice materials plays a significant role in motivating the discovery of exotic magnetic states. Herein, we report a family of hexagonal perovskite compounds Ba6RE2Ti4O17 (RE = Nd, Sm, Gd, Dy-Yb) with a space group of P63/mmc, where magnetic RE3+ ions are distributed on the parallel triangular-lattice layers within the ab-plane and stacked in an 'AA'-type fashion along the c-axis. The low-temperature magnetic characterizations indicate that all synthesized Ba6RE2Ti4O17 compounds exhibit dominant antiferromagnetic (AFM) interactions and the absence of magnetic order down to 1.8 K. The isothermal magnetization and electron spin resonance results reveal the distinct magnetic anisotropy for the compounds with different RE ions. Moreover, the as-grown Ba6Nd2Ti4O17 single crystals exhibit Ising-like magnetic anisotropy with a magnetic easy-axis perpendicular to the triangle-lattice plane and no long-range magnetic order down to 80 mK, as the quantum spin liquid candidate with dominant Ising-type interactions.

8.
Expert Rev Vaccines ; 23(1): 419-431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529685

RESUMO

BACKGROUND: Recombinant protein vaccines are vital for broad protection against SARS-CoV-2 variants. This study assessed ReCOV as a booster in two Phase 2 trials. RESEARCH DESIGN AND METHODS: Study-1 involved subjects were randomized (1:1:1) to receive 20 µg ReCOV, 40 µg ReCOV, or an inactivated vaccine (COVILO®) in the United Arab Emirates. Study-2 participating individuals were randomized (1:1:1) to receive 20 µg ReCOV (pilot batch, ReCOV HA), 20 µg ReCOV (commercial batch, ReCOV TC), or 30 µg BNT162b2 (COMIRNATY®) in the Philippines. The primary immunogenicity objectives was to compare the geometric mean titer (GMT) and seroconversion rate (SCR) of neutralizing antibodies induced by one ReCOV booster dose with those of inactivated vaccine and BNT162b2, respectively, at 14 days post-booster. RESULTS: Heterologous ReCOV booster doses were safe and induced comparable immune responses to inactivated vaccines and BNT162b2 against Omicron variants and the prototype. They showed significant advantages in cross-neutralization against multiple SARS-CoV-2 variants, surpassing inactivated vaccines and BNT162b2, with good immune persistence. CONCLUSIONS: Heterologous ReCOV boosting was safe and effective, showing promise in combating COVID-19. The study highlights ReCOV's potential for enhanced protection, supported by strong cross-neutralization and immune persistence. CLINICAL TRIAL REGISTRATION: Study-1, www.clinicaltrials.gov, identifier is NCT05323435; Study-2, www.clinicaltrials.gov, identifier is NCT05084989.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinas de Produtos Inativados/efeitos adversos , Imunogenicidade da Vacina , Anticorpos Antivirais
9.
Sci Total Environ ; 919: 170553, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336044

RESUMO

To combat climate change, China's building sector, responsible for almost 50 % of national emissions, must undergo a drastic decarbonization transformation. This paper charts the optimal path to achieve this goal, leveraging a combined framework of the Low Emissions Analysis Platform (LEAP) and System Dynamics (SD) for scenario-based forecasting of energy consumption and emissions in 2021-2060. A linear programming model is further developed to identify the lowest-cost combination of 26 building green technologies that align with China's carbon peaking and carbon neutrality targets. Results show that in a business-as-usual scenario, building carbon emissions will peak at 6393 million tons of CO2 in 2041, missing the 2030 carbon peaking target. Key drivers of this shortfall include the high energy intensity for "Transport, Storage and Post" and the large carbon emission factors for "Wholesale, Retail Trades, Hotels, and Catering Services" and "Residential" sectors. Under various technology application scenarios assuming uniform penetration rates, the 2030 carbon peak target appears attainable, though at a considerably high cost. Finally, under optimal technology combinations, building carbon emissions are forecasted to peak in 2030 at 5139 million tons of CO2, a mere 4.4 % increase from 2020. The cost of this optimized combination is projected to represent only 1.5 % of the total GDP in 2060. This scenario also leads to a significantly weaker correlation between energy consumption and carbon emissions in the building sector around 2036, nearly 17 years ahead of the business-as-usual trajectory.

10.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352551

RESUMO

Single-molecule RNA fluorescence in situ hybridization (RNA FISH)-based spatial transcriptomics methods have enabled the accurate quantification of gene expression at single-cell resolution by visualizing transcripts as diffraction-limited spots. While these methods generally scale to large samples, image analysis remains challenging, often requiring manual parameter tuning. We present Piscis, a fully automatic deep learning algorithm for spot detection trained using a novel loss function, the SmoothF1 loss, that approximates the F1 score to directly penalize false positives and false negatives but remains differentiable and hence usable for training by deep learning approaches. Piscis was trained and tested on a diverse dataset composed of 358 manually annotated experimental RNA FISH images representing multiple cell types and 240 additional synthetic images. Piscis outperforms other state-of-the-art spot detection methods, enabling accurate, high-throughput analysis of RNA FISH-derived imaging data without the need for manual parameter tuning.

11.
EClinicalMedicine ; 67: 102372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169790

RESUMO

Background: The mRNA vaccine has demonstrated significant effectiveness in protecting against SARS-CoV-2 during the pandemic, including against severe forms of the disease caused by emerging variants. In this study, we examined safety, immunogenicity, and relative efficacy of a heterologous booster of the lipopolyplex (LPP)-based mRNA vaccine (SW-BIC-213) versus a homologous booster of an inactivated vaccine (BBIBP) in Laos. Methods: In this phase 3 clinical trial, which was randomized, parallel controlled and double-blinded, healthy adults aged 18 years and above were recruited from the Southern Savannakhet Provincial Hospital and Champhone District Hospital. The primary outcomes were safety and immunogenicity, with efficacy as an exploratory endpoint. Participants who were fully immunized with a two-dose inactivated vaccine for more than 6 months were assigned equally to either the SW-BIC-213 group (25 µg) or BBIBP group. The primary safety endpoint was to describe the safety profile of all participants in each group up to 6 months post-booster immunization. The primary immunogenic outcome was to demonstrate the superiority of the neutralizing antibody response, in terms of geometric mean titers (GMTs) of SW-BIC-213, compared with BBIBP 28 days after the booster dose. The exploratory efficacy endpoint aimed to assess the relative efficacy of SW-BIC-213 compared to BBIBP against virologically confirmed symptomatic COVID-19 over a 6-month period. The trial was registered with ClinicalTrials.gov (NCT05580159). Findings: Between October 10, 2022, and January 13, 2023, 1200 participants were assigned to SW-BIC-213 group and 1203 participants in the BBIBP group. All adverse reactions observed during the study were tolerable, transient, and resolved spontaneously. Solicited local reactions were the main adverse reactions in both the SW-BIC-213 group (43.8%) and BBIBP group (14.8%) (p < 0.001). Heterologous boosting with SW-BIC-213 induced higher live virus neutralizing antibodies to SARS-CoV-2 wildtype and BA.5 strains with GMTs reaching 750.1 and 192.9 than homologous boosting with BBIBP with GMTs of 131.5 (p < 0.001) and 47.5 (p < 0.001) on day 29. The statistical findings revealed that, following a period of 14-day to 6-month after booster vaccination, the SW-BIC-213 group exhibited a relative vaccine efficacy (VE) of 70.1% (95% CI: 34.2-86.4) against symptomatic COVID-19 when compared to the BBIBP group. Interpretation: A heterologous booster with the COVID-19 mRNA vaccine SW-BIC-213 manifests a favorable safety profile and proves highly immunogenic and efficacious in preventing symptomatic COVID-19 in individuals who have previously received two doses of inactivated vaccine. Funding: Shanghai Strategic Emerging Industries Development Special Fund, Biomedical Technology Support Special Project of Shanghai "Science and Technology Innovation Action Plan", Shanghai Municipal Science and Technology Commission.

12.
Cell Death Dis ; 15(1): 27, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199990

RESUMO

Intestinal epithelial renewal, which depends on the proliferation and differentiation of intestinal stem cells (ISCs), is essential for epithelial homoeostasis. Understanding the mechanism controlling ISC activity is important. We found that death receptor 5 (DR5) gene deletion (DR5-/-) mice had impaired epithelial absorption and barrier function, resulting in delayed weight gain, which might be related to the general reduction of differentiated epithelial cells. In DR5-/- mice, the expression of ISC marker genes, the number of Olfm4+ ISCs, and the number of Ki67+ and BrdU+ cells in crypt were reduced. Furthermore, DR5 deletion inhibited the expression of lineage differentiation genes driving ISC differentiation into enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Therefore, DR5 gene loss may inhibit the intestinal epithelial renewal by dampening ISC activity. The ability of crypts from DR5-/- mice to form organoids decreased, and selective DR5 activation by Bioymifi promoted organoid growth and the expression of ISC and intestinal epithelial cell marker genes. Silencing of endogenous DR5 ligand TRAIL in organoids down-regulated the expression of ISC and intestinal epithelial cell marker genes. So, DR5 expressed in intestinal crypts was involved in the regulation of ISC activity. DR5 deletion in vivo or activation in organoids inhibited or enhanced the activity of Wnt, Notch, and BMP signalling through regulating the production of Paneth cell-derived ISC niche factors. DR5 gene deletion caused apoptosis and DNA damage in transit amplifying cells by inhibiting ERK1/2 activity in intestinal crypts. Inhibition of ERK1/2 with PD0325901 dampened the ISC activity and epithelial regeneration. In organoids, when Bioymifi's effect in activating ERK1/2 activity was completely blocked by PD0325901, its role in stimulating ISC activity and promoting epithelial regeneration was also eliminated. In summary, DR5 in intestinal crypts is essential for ISC activity during epithelial renewal under homoeostasis.


Assuntos
Benzamidas , Difenilamina , Ftalimidas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Células-Tronco , Tiazolidinas , Animais , Camundongos , Difenilamina/análogos & derivados , Homeostase
13.
Biotechnol Appl Biochem ; 71(1): 110-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904285

RESUMO

We investigated if poly-lactic acid (PLA) nanopillar array can trigger the differentiation of human epicardial (ADSCs) (heADSCs) into cardiomyocyte-like cells and explored the effects of these cardiomyocyte-like cells on myocardial infarction (MI) in vivo. PLA nanopillar array (200 nm diameter) and plain PLA film (PLA planar) induced heADSCs were marked with carboxyfluorescein. After 7 days, the expressions of myocardiocyte-specific genes were significantly enhanced in cells seeded on PLA nanopillar array compared with that on PLA planar, especially CACNA1C, KCNH2, and MYL2 genes (p < 0.05). However, the expressions of cardiac troponin T (cTNT), KCNQ1, and KCNA5 were lower than those in PLA planar-induced heADSCs (p < 0.05), whereas GATA4 tended to increase with time. The cells with positively stained α-actinin and cTNT were elevated in heADSCs induced by PLA nanopillar array compared with those induced by PLA planar only (p < 0.05). In vivo experiments showed that cardiac function was improved after injecting PLA-nanopillar array-induced heADSCs into the ischemic heart (p < 0.05, compared with PLA planar + MI group). Furthermore, tyrosine hydroxylase density was significantly lower (p < 0.05). PLA nanopillar array directly drives the differentiation of heADSCs into cardiomyocyte-like cells, and the induced heADSCs exhibit a protective effect on ischemic myocardium by improving cardiac function in MI rats.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Humanos , Ratos , Animais , Poliésteres/metabolismo , Células-Tronco , Ácido Láctico/metabolismo
14.
Adv Sci (Weinh) ; 11(2): e2305902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953462

RESUMO

Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Lipídeos , Mamíferos/metabolismo
15.
Infect Dis Ther ; 13(1): 57-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103161

RESUMO

INTRODUCTION: ReCOV is a recombinant protein vaccine that aims to induce cross-neutralization against SARS-CoV-2 variants. The phase I and phase II studies were conducted in New Zealand and the Philippines, respectively, for ReCOV primary series. METHODS: Both studies were randomized, double-blind, placebo-controlled designed among COVID-19 vaccine-naïve healthy adults who received two doses of study vaccination with a 21-day interval. In phase I, 100 younger (15-55 years) and older (56-80 years) subjects were 4:1 randomized to receive ReCOV (20 µg or 40 µg) or placebo. In the phase II study, 347 subjects (≥ 18 years) were 2:1 randomized to receive 40 µg ReCOV or placebo. Subjects that received ReCOV were followed up for 6 months after the second dosing. The safety outcomes included solicited and unsolicited AEs, SAEs, and AESIs. The immunogenicity outcomes were live-virus neutralizing antibody (NAb) against prototype, while pseudovirus NAbs against several SARS-CoV-2 variants were included in phase II as well. RESULTS: No related SAE, AESI, or AE leading to early discontinuation were reported. The AE incidences were higher in ReCOV groups than placebo group in phase I while they were similar between study groups in phase II. The majority of solicited AEs were mild or moderate with median duration of 1.0-4.0 days. The common (≥ 10%) solicited AEs in phase I were injection site reactions, headache, pyrexia, fatigue, and myalgia, and common reported (≥ 5%) ones in phase II included injection site pain, headache, and pyrexia. Robust neutralizing activities against the prototype were observed in ReCOV groups, peaking at 14 days post the second dosing: in phase I, the GMTs for 20 µg and 40 µg ReCOV groups were 1643.2 IU/mL (95% CI 1188.5, 2271.9) and 1289.2 IU/mL (95% CI 868.3, 1914.1) in younger adults, and 1122.3 IU/mL (95% CI 722.6, 1743.1) and 680.3 IU/mL (95% CI 440.2, 1051.4) in older adults, respectively, while in the ReCOV group of phase II, the GMTs for subjects with seronegative and seropositive status at baseline were 3741.0 IU/mL (95% CI 3113.4, 4495.0) and 6138.3 IU/mL (95% CI 5255.1, 7169.9), respectively. In phase II, substantial levels of pseudovirus NAbs against SARS-CoV-2 variants were demonstrated; the peak GMTs for prototype, Omicron BA.2, and BA.4/5 were 8857, 4441, and 2644, and 15,667.3, 7334.3, and 4478.8 among seronegative and seropositive subjects, respectively. The neutralization persisted till 6 months post the second dosing, with only 2.5- to 5.2-fold declines for Omicron variants. CONCLUSIONS: Two doses of 20 µg and 40 µg ReCOV are safe and immunogenic against SARS-CoV-2 prototype. The cross-neutralizing activities against Omicron variants support ReCOV advance to late-stage clinical trials. TRIAL REGISTRATION: Phase I study, clinicaltrials.gov NCT04818801; phase II study, clinicaltrials.gov NCT05084989.

16.
Food Funct ; 15(2): 625-646, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38099724

RESUMO

Delayed mucosal healing and impaired intestinal epithelial barrier function have been implicated in the pathogenesis of ulcerative colitis (UC). Accordingly, restoration of epithelial barrier function as a means to reshape mucosal homeostasis represents an important strategy for use in the treatment of UC. In this study, we examined the role and mechanisms of D-mannose in the recovery of colitis as assessed in both animal and cell models. We found that D-mannose ameliorated inflammation, promoted mucosal healing in the colon and therefore was able to induce the recovery of UC. Furthermore, D-mannose increased the expression of tight junction (TJ) proteins and reduced the intestinal permeability during the recovery of colitis. Moreover, D-mannose inhibited M1 macrophage polarization and promoted M2 macrophage polarization via inducing AMPK phosphorylation while reducing mTOR phosphorylation in both models. In addition, increased TJ protein expression and decreased paracellular permeability were observed in NCM460 cells when incubated with the supernatants of D-mannose-treated RAW264.7 cells, suggesting that M1/M2 polarization induced by D-mannose modulates the expression of TJ proteins. Further study showed that D-mannose significantly upregulated the expression of TJ proteins in DSS-treated NCM460 cells by inducing AMPK phosphorylation, indicating a direct protective effect on epithelial cells. Finally, the protective effects of D-mannose were significantly abrogated by the presence of compound C, an AMPK inhibitor. Taken together, our data indicate that D-mannose can alleviate inflammation and foster epithelial restitution in UC recovery by inducing the TJ protein expression, which are achieved by inducing AMPK phosphorylation in the epithelium and/or macrophages.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Manose/metabolismo , Fosforilação , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Inflamação/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
17.
Haematologica ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058209

RESUMO

Little is known about the transition mechanisms that govern early lymphoid lineage progenitors from common lymphoid progenitors (CLPs). Pellino2 (PELI2) is a newly discovered E3 ubiquitin ligase, which plays important roles in inflammation and immune system. However, the physiological and molecular roles of PELI2 in the differentiation of immune cells are largely unknown. Here, by using a conditional knockout mouse model, we demonstrated that PELI2 is required for the early B-cell development and stressed hematopoiesis. PELI2 interacted with and stabilized PU.1 via K63- polyubiquitination to regulate IL-7R expression. The defects of B cell development induced by PELI2 deletion were restored by overexpression of PU.1. Similarly, PELI2 promoted TCF3 protein stability via K63- polyubiquitination to regulate IL-7R expression, which is required for the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. These results underscore the significance of PELI2 in both normal B lymphopoiesis and malignant B-cell acute lymphoblastic leukemia via the regulation of IL-7R expression, providing a potential therapeutic approach for BCP-ALL.

18.
Chin Med J (Engl) ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092722

RESUMO

ABSTRACT: Bacille Calmette-Guérin (BCG) vaccine is designed to provide protection against tuberculosis (TB). However, numerous epidemiological, clinical, and immunological studies have shown that BCG vaccination affects neonatal and infant mortality, which may be related to the reduction of TB-unrelated infections and diseases by BCG vaccine. We aimed to discuss the off-target effects of BCG vaccine on un-TB infections and diseases, as well as the potential mechanism and influencing factors. Literature was retrieved mainly from PubMed using medical subject headings "BCG, variations, and non-specific, heterologous or off-target". Studies have showed that BCG vaccination can prevent various heterologous infections, including respiratory tract infections, leprosy, and malaria, treat viral infections including human papillomavirus and herpes simplex virus infection as immunotherapy, and improve the immune responses as vaccine adjuvant. Besides, BCG vaccine can reduce the recurrence rate of non-muscle-invasive bladder cancer, and may provide protection against autoimmune diseases. These off-target effects of BCG vaccine are thought to be achieved by modulating heterologous lymphocyte responses or inducing trained immunity, which were found to be sex-differentiated and affected by the BCG vaccine strains, sequence or time of vaccination.

19.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140219

RESUMO

Previous reports have shown that heterologous boosting with the AD5-vectored COVID-19 vaccine Convidecia based on a primary series of two doses of inactivated vaccine induces increasing immune responses. However, the immune persistence until 6 months after the heterologous prime-boost immunization was limited. Participants were from two single-center, randomized, controlled, observer-blinded trials, which involved individuals of 18-59 years of age and over 60 years of age. Eligible participants who previously primed with one dose or two doses of CoronaVac were stratified and randomly assigned to inoculate a booster dose of Convidecia or CoronaVac. Neutralizing antibodies against a live SARS-CoV-2 prototype virus and Delta and Omicron (B.1.1.529) variants, pseudovirus neutralizing antibodies against Omicron BA.4/5 variants, and anti-SARS-CoV-2 RBD antibodies at month 6 were detected, and the fold decreases and rate difference were calculated by comparing the levels of antibodies at month 6 with the peak levels at month 1. The neutralizing antibody titers against prototype SARS-CoV-2, RBD-specific IgG antibodies, and the Delta variant in the heterologous regimen of the CoronaVac plus Convidecia groups were significantly higher than those of the homologous prime-boost groups. In three-dose regimen groups, the geometric mean titers (GMTs) of neutralizing antibodies against prototype SARS-CoV-2 were 30.6 (95% CI: 25.1; 37.2) in the heterologous boosting group versus 6.9 (95% CI: 5.6; 8.6) in the homologous boosting group (p < 0.001) at month 6 in participants aged 18-59 years, and in the two-dose regimen, the neutralizing antibody GMTs were 8.5 (95% CI: 6.2; 11.7) and 2.7 (2.3 to 3.1) (heterologous regimen group versus CoronaVac regimen group, p < 0.001). Participants aged over 60 years had similar levels of neutralizing antibodies against the prototype, with GMTs of 49.1 (38.0 to 63.6) in the group receiving two doses of CoronaVac plus one dose of Convidecia versus 9.4 (7.7 to 11.4) in the group receiving three doses of CoronaVac (p < 0.001) and 11.6 (8.4 to 16.0) in the group receiving one dose of CoronaVac and one dose of Convidecia versus 3.3 (2.7 to 4.0) in the group receiving two doses of CoronaVac (p < 0.001). Compared with day 14, over sixfold decreases in neutralizing antibody GMTs were observed in the heterologous groups of the three- or two-dose regimen groups of younger and elderly participants, while in the homologous regimen groups, the GMTs of neutralizing antibodies decreased about fivefold in the two age groups. The heterologous prime-boost regimen with two doses of CoronaVac and one dose of Convidecia was persistently more immunogenic than the regimen of the homologous prime-boost with three doses of CoronaVac.

20.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889087

RESUMO

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Assuntos
Oogênese , RNA Mensageiro Estocado , Feminino , Humanos , Meiose/genética , Oócitos/fisiologia , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro Estocado/genética , Camundongos Endogâmicos C57BL , Masculino , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...